Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomater Adv ; 159: 213829, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38531258

RESUMEN

The mechanics of the tumor microenvironment (TME) significantly impact disease progression and the efficacy of anti-cancer therapeutics. While it is recognized that advanced in vitro cancer models will benefit cancer research, none of the current engineered extracellular matrices (ECM) adequately recapitulate the highly dynamic TME. Through integrating reversible boronate-ester bonding and dithiolane ring-opening polymerization, we fabricated synthetic polymer hydrogels with tumor-mimetic fast relaxation and reversibly tunable elastic moduli. Importantly, the crosslinking and dynamic stiffening of matrix mechanics were achieved in the absence of a photoinitiator, often the source of cytotoxicity. Central to this strategy was Poly(PEGA-co-LAA-co-AAPBA) (PELA), a highly defined polymer synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. PELA contains dithiolane for initiator-free gel crosslinking, stiffening, and softening, as well as boronic acid for complexation with diol-containing polymers to give rise to tunable viscoelasticity. PELA hydrogels were highly cytocompatible for dynamic culture of patient-derived pancreatic cancer cells. It was found that the fast-relaxing matrix induced mesenchymal phenotype of cancer cells, and dynamic matrix stiffening restricted tumor spheroid growth. Moreover, this new dynamic viscoelastic hydrogel system permitted sequential stiffening and softening to mimic the physical changes of TME.


Asunto(s)
Hidrogeles , Neoplasias , Humanos , Hidrogeles/farmacología , Técnicas de Cultivo de Célula , Polímeros , Módulo de Elasticidad , Microambiente Tumoral
2.
Macromol Biosci ; 24(2): e2300371, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37748778

RESUMEN

The thiol-norbornene photo-click reaction has exceptionally fast crosslinking efficiency compared with chain-growth polymerization at equivalent macromer contents. The orthogonal reactivity between norbornene and thiol/tetrazine permits crosslinking of synthetic and naturally derived macromolecules with modularity, including poly(ethylene glycol) (PEG)-norbornene (PEGNB), gelatin-norbornene (GelNB), among others. For example, collagen-derived gelatin contains both cell adhesive motifs (e.g., Arg-Gly-Asp or RGD) and protease-labile sequences, making it an ideal macromer for forming cell-laden hydrogels. First reported in 2014, GelNB is increasingly used in orthogonal crosslinking of biomimetic matrices in various applications. GelNB can be crosslinked into hydrogels using multi-functional thiol linkers (e.g., dithiothreitol (DTT) or PEG-tetra-thiol (PEG4SH) via visible light or longwave ultraviolet (UV) light step-growth thiol-norbornene reaction or through an enzyme-mediated crosslinking (i.e., horseradish peroxidase, HRP). GelNB-based hydrogels can also be modularly crosslinked with tetrazine-bearing macromers via inverse electron-demand Diels-Alder (iEDDA) click reaction. This review surveys the various methods for preparing GelNB macromers, the crosslinking mechanisms of GelNB-based hydrogels, and their applications in cell and tissue engineering, including crosslinking of dynamic matrices, disease modeling, and tissue regeneration, delivery of therapeutics, as well as bioprinting and biofabrication.


Asunto(s)
Gelatina , Hidrogeles , Ingeniería de Tejidos , Norbornanos , Compuestos de Sulfhidrilo
3.
Biochim Biophys Acta Rev Cancer ; 1878(5): 188950, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37419192

RESUMEN

Ovarian cancer (OVCA) is the second most common gynecological cancer and one of the leading causes of cancer related mortality among women. Recent studies suggest that among ovarian cancer patients at least 70% of the cases experience the involvement of lymph nodes and metastases through lymphatic vascular network. However, the impact of lymphatic system in the growth, spread and the evolution of ovarian cancer, its contribution towards the landscape of ovarian tissue resident immune cells and their metabolic responses is still a major knowledge gap. In this review first we present the epidemiological aspect of the OVCA, the lymphatic architecture of the ovary, we discuss the role of lymphatic circulation in regulation of ovarian tumor microenvironment, metabolic basis of the upregulation of lymphangiogenesis which is often observed during progression of ovarian metastasis and ascites development. Further we describe the implication of several mediators which influence both lymphatic vasculature as well as ovarian tumor microenvironment and conclude with several therapeutic strategies for targeting lymphatic vasculature in ovarian cancer progression in present day.


Asunto(s)
Vasos Linfáticos , Neoplasias Ováricas , Humanos , Femenino , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patología , Neoplasias Ováricas/patología , Linfangiogénesis/fisiología , Ganglios Linfáticos/patología , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...